Search results for "waste disposal"

showing 10 items of 246 documents

Granulation and microbial community dynamics in the chitosan-supplemented anaerobic treatment of wastewater polluted with organic solvents.

2018

Abstract The effect of chitosan on the development of granular sludge in upflow anaerobic sludge blanket reactors (UASB) when treating wastewater polluted with the organic solvents ethanol, ethyl acetate, and 1-ethoxy-2-propanol was evaluated. Three UASB reactors were operated for 219 days at ambient temperature with an organic loading rate (OLR) of between 0.3 kg COD m −3 d −1 and 20 kg COD m −3 d −1 . One reactor was operated without the addition of chitosan, while the other two were operated with the addition of chitosan doses of 2.4 mg gVSS −1 two times. The three reactors were all able to treat the OLR tested with COD removal efficiencies greater than 90%. However, the time required to…

0106 biological sciencesAigua ContaminacióEnvironmental EngineeringPolymersEthyl acetate010501 environmental sciencesWastewater01 natural sciencesWaste Disposal FluidMethanosaetaMethanomicrobialesChitosanchemistry.chemical_compoundGranulationExtracellular polymeric substanceBioreactors010608 biotechnologyAnaerobiosisParticle SizeWaste Management and Disposal0105 earth and related environmental sciencesWater Science and TechnologyCivil and Structural EngineeringBiological Oxygen Demand AnalysisChitosanbiologySewageEcological ModelingMicrobiotaGranule (cell biology)biology.organism_classificationPulp and paper industryPollutionMethanogenchemistryWastewaterSolventsAigua MicrobiologiaGeobacterWater Pollutants ChemicalWater research
researchProduct

Aeration control in membrane bioreactor for sustainable environmental footprint

2020

In this study different scenarios were scrutinized to minimize the energy consumption of a membrane bioreactor system for wastewater treatment. Open-loop and closed-loop scenarios were investigated by two-step cascade control strategies based on dissolved oxygen, ammonia and nitrite concentrations. An integrated MBR model which includes also the greenhouse gas formation/emission processes was applied. A substantial energy consumption reduction was obtained for the closed-loop scenarios (32% for Scenario 1 and 82% for Scenario 2). The air flow control based on both ammonia and nitrite concentrations within the aerobic reactor (Scenario 2) provided excellent results in terms of reduction of o…

0106 biological sciencesEnvironmental EngineeringAeration-based control strategyBioengineeringWastewater010501 environmental sciencesMembrane bioreactorWaste Disposal Fluid01 natural sciencesGreenhouse Gaseschemistry.chemical_compoundBioreactorsAmmonia010608 biotechnologyBioreactorWaste WaterNitriteWaste Management and DisposalOperating cost0105 earth and related environmental sciencesProportion-integration controlSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentEnvironmental engineeringGeneral MedicineEnergy consumptionOxygenchemistryGreenhouse gasMembrane bioreactorEnvironmental scienceSewage treatmentAerationBioresource Technology
researchProduct

Anaerobic membrane bioreactors (AnMBR) treating urban wastewater in mild climates

2020

[EN] Feasibility of an AnMBR demonstration plant treating urban wastewater (UWW) at temperatures around 25-30 degrees C was assessed during a 350-day experimental period. The plant was fed with the effluent from the pretreatment of a full-scale municipal WWTP, characterized by high COD and sulfate concentrations. Biodegradability of the UWW reached values up to 87%, although a portion of the biodegradable COD was consumed by sulfate reducing organisms. Effluent COD remained below effluent discharge limits, achieving COD removals above 90%. System operation resulted in a reduction of sludge production of 36-58% compared to theoretical aerobic sludge productions. The membranes were operated a…

0106 biological sciencesEnvironmental EngineeringBioengineeringMild/warmer climateWastewater010501 environmental sciencesWaste Disposal Fluid01 natural scienceschemistry.chemical_compoundBioreactors010608 biotechnologyBioreactorUrban wastewater (UWW)AnaerobiosisSulfateWaste Management and DisposalEffluentTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesRenewable Energy Sustainability and the EnvironmentAnaerobic membrane bioreactor (AnMBR)Membrane foulingMembranes ArtificialGeneral MedicineBiodegradationPulp and paper industryMethane productionIndustrial-scale membraneMembraneWastewaterchemistryEnvironmental scienceMethaneAnaerobic exerciseDemonstration plant
researchProduct

A plant-wide modelling comparison between membrane bioreactors and conventional activated sludge

2020

Abstract A comprehensive plant-wide mathematical modelling comparison between conventional activated sludge (CAS) and Membrane bioreactor (MBR) systems is presented. The main aim of this study is to highlight the key features of CAS and MBR in order to provide a guide for an effective plant operation. A scenario analysis was performed to investigate the influence on direct and indirect greenhouse gas (GHG) emissions and operating costs of (i) the composition of inflow wastewater (scenario 1), (ii) operating conditions (scenario 2) and (iii) oxygen transfer efficiency (scenario 3). Scenarios show higher indirect GHG emissions for MBR than CAS, which result is related to the higher energy con…

0106 biological sciencesEnvironmental EngineeringBioengineeringWastewater010501 environmental sciencesMembrane bioreactor01 natural sciencesWaste Disposal FluidGreenhouse GasesBioreactors010608 biotechnologyBioreactorWaste WaterScenario analysisWaste Management and Disposal0105 earth and related environmental sciencesWWTPEnergy demandMathematical modellingSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentEnvironmental engineeringMembranes ArtificialGeneral MedicineEnergy consumptionActivated sludgeWastewaterPlant-wide modelGreenhouse gasSimple modelEnvironmental scienceWaste disposal
researchProduct

Combination of the OSA process with thermal treatment at moderate temperature for excess sludge minimization

2019

Abstract This study investigated the chance to couple the conventional Oxic Settling Anaerobic (OSA) process with a thermic treatment at moderate temperature (35 °C). The maximum excess sludge reduction rate (80%) was achieved when the plant was operated under 3 h of hydraulic retention time (HRT). Compared with the conventional OSA system, the thermic treatment enabled a further improvement in excess sludge minimization of 35%. The observed yield coefficient decreased from 0.25 gTSS gCOD−1 to 0.10 gTSS gCOD−1 when the temperature in the anaerobic reactor was increased to 35 °C, despite the lower HRT (3 h vs 6 h). Moreover, the thermic treatment enabled the decrease of filamentous bacteria,…

0106 biological sciencesEnvironmental EngineeringHydraulic retention timeSegmented filamentous bacteriaBiomassBioengineeringThermal treatment010501 environmental sciencesWaste Disposal Fluid01 natural sciencesBioreactorsExtracellular polymeric substanceSettling010608 biotechnologyThermic treatmentAnaerobiosisBiomassWaste Management and Disposal0105 earth and related environmental sciencesOSA proceSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentChemistryTemperatureGeneral MedicinePulp and paper industryActivated sludgeActivated sludgeSludge minimizationBiomass kineticAnaerobic exerciseBioresource Technology
researchProduct

Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale

2020

[EN] The objective of this study was to evaluate the performance of an outdoor membrane-coupled high-rate algal pond equipped with industrial-scale membranes for treating urban wastewater. Decoupling biomass retention time (BRT) and hydraulic retention time (HRT) by membrane filtration resulted in improved process efficiencies, with higher biomass productivities and nutrient removal rates when operating at low HRTs. At 6 days of BRT, biomass productivity increased from 30 to 66 and to 95 g.m(-3).d(-1) when operating at HRTs of 6, 4 and 2.5 days, respectively. The corresponding nitrogen removal rates were 4, 8 and 11 g N.m(-3).d(-1) and the phosphorous removal rates were 0.5, 1.3 and 1.6 g P…

0106 biological sciencesINGENIERIA HIDRAULICAEnvironmental EngineeringHydraulic retention timeNitrogenUltrafiltrationBioengineering010501 environmental sciencesWastewater7. Clean energy01 natural sciencesEnergy requirementWaste Disposal FluidWater PurificationNutrient010608 biotechnologyHollow-fibre membranes[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringBiomassPondsWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesHigh rateRenewable Energy Sustainability and the EnvironmentGeneral MedicinePulp and paper industryProduced water6. Clean waterIndustrial-scaleHRAPMembraneNutrient recoveryWastewater13. Climate actionEnvironmental scienceSewage treatment
researchProduct

New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy

2020

[EN] Nutrient recovery technologies are rapidly expanding due to the need for the appropriate recycling of key elements from waste resources in order to move towards a truly sustainable modern society based on the Circular Economy. Nutrient recycling is a promising strategy for reducing the depletion of non-renewable resources and the environmental impact linked to their extraction and manufacture. However, nutrient recovery technologies are not yet fully mature, as further research is needed to optimize process efficiency and enhance their commercial applicability. This paper reviews state-of-the-art of nutrient recovery, focusing on frontier technological advances and economic and environ…

0106 biological sciencesNutrient cycleEnvironmental EngineeringNitrogenchemistry.chemical_elementBioengineeringWastewater010501 environmental sciencesWaste Disposal Fluid01 natural sciencesNutrient010608 biotechnologyPhotosynthetic-based systemsRecyclingEnvironmental impact assessmentCircular EconomyWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesMembranesWaste managementRenewable Energy Sustainability and the Environment06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todosCircular economyPhosphorusPhosphorusGeneral MedicineIncinerationNutrient recoveryWastewaterchemistryProcess efficiencyEnvironmental scienceCrystallization
researchProduct

Integrated membrane bioreactors modelling: A review on new comprehensive modelling framework

2021

International audience; Integrated Membrane Bioreactor (MBR) models, combination of biological and physical models, have been representing powerful tools for the accomplishment of high environmental sustainability. This paper, produced by the International Water Association (IWA) Task Group on Membrane Modelling and Control, reviews the state-of-the-art, identifying gaps for future researches, and proposes a new integrated MBR modelling framework. In particular, the framework aims to guide researchers and managers in pursuing good performances of MBRs in terms of effluent quality, operating costs (such as membrane fouling, energy consumption due to aeration) and mitigation of greenhouse gas…

0106 biological sciencesPerformance indicatorsComputer scienceWastewater treatment010501 environmental sciencesWastewaterMembrane bioreactor01 natural sciences7. Clean energyWaste Disposal FluidBioreactorsTheoreticalModels11. SustainabilityWaste Management and Disposalmedia_common[SDE.IE]Environmental Sciences/Environmental EngineeringWaste DisposalGeneral MedicineEnergy consumptionBiological processes High environmental sustainability Modelling framework Performance indicators Bioreactors Membranes Artificial Models Theoretical Waste Water Greenhouse Gases Waste Disposal Fluid6. Clean waterBiological processes; High environmental sustainability; Modelling framework; Performance indicators; Bioreactors; Membranes Artificial; Models Theoretical; Waste Water; Greenhouse Gases; Waste Disposal FluidInternational watersArtificialFluidBiotechnologyEnvironmental Engineeringmedia_common.quotation_subjectModelling frameworkBioengineering12. Responsible consumptionGreenhouse Gases010608 biotechnologyGénie chimiqueQuality (business)Waste Water[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringGénie des procédés0105 earth and related environmental sciencesMembranesBiological processesSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentMembrane foulingMembranes ArtificialModels Theoretical[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation13. Climate actionGreenhouse gasSustainabilityHigh environmental sustainabilityBiochemical engineeringPerformance indicator
researchProduct

Acclimatised rumen culture for raw microalgae conversion into biogas: Linking microbial community structure and operational parameters in anaerobic m…

2019

[EN] Ruminal fluid was inoculated in an Anaerobic Membrane Reactor (AnMBR) to produce biogas from raw Scenedesmus. This work explores the microbial ecology of the system during stable operation at different solids retention times (SRT). The 16S rRNA amplicon analysis revealed that the acclimatised community was mainly composed of Anaerolineaceae, Spirochaetaceae, Lentimicrobiaceae and Cloacimonetes fermentative and hydrolytic members. During the highest biodegradability achieved in the AnMBR (62%) the dominant microorganisms were Fervidobacterium and Methanosaeta. Different microbial community clusters were observed at different SRT conditions. Interestingly, syntrophic bacteria Gelria and …

0106 biological sciencesRumenEnvironmental EngineeringMicroorganismBioengineering010501 environmental sciencesWaste Disposal Fluid01 natural sciencesMethanosaetaBioreactorsBiogasMicrobial ecologyBioenergyRNA Ribosomal 16S010608 biotechnologyMicroalgaeBioreactorAnimalsAnaerobiosisWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesbiologyAnaerobic membrane bioreactor (AnMBR)Renewable Energy Sustainability and the EnvironmentChemistryMicrobiotaGeneral MedicineBiogasMicroalgaeBiodegradationbiology.organism_classificationPulp and paper industryMicrobial population biologyBiofuels16S rRNA geneMethaneBioresource Technology
researchProduct

A new strategy to maximize organic matter valorization in municipalities: combination of urban wastewater with kitchen food waste and its treatment w…

2017

[EN] The aim of this study was to evaluate the feasibility of treating the kitchen food waste (FW) jointly with urban wastewater (WW) in a wastewater treatment plant (WWTP) by anaerobic membrane technology (AnMBR). The experience was carried out in six different periods in an AnMBR pilot-plant for a total of 536 days, varying the SRT, HRT and the food waste penetration factor (PF) of food waste disposers. The results showed increased methane production of up to 190% at 70 days SRT, 24 hours HRT and 80% PF, compared with WW treatment only. FW COD and biodegradability were higher than in WW, so that the incorporation of FW into the treatment increases the organic load and the methane producti…

0208 environmental biotechnology02 engineering and technology010501 environmental sciencesGarbageWastewater01 natural sciencesWaste Disposal FluidMembrane technologyKitchen food waste (FW)Organic matterOrganic matter valorizationMethane productionCitiesSubmerged anaerobic membrane bioreactor (AnMBR)Waste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental scienceschemistry.chemical_classificationAnaerobic wastewater treatmentWaste managementBiodegradation020801 environmental engineeringFood wasteWastewaterchemistryPenetration factorPenetration factor (PF)Environmental scienceSewage treatmentWastewater co-treatmentMethane
researchProduct